目前对于电力变压器常用的研究方法大多基于某一因素或某几个因素做出判断,并未综合考虑变压器的全面状态信息,加之测试手段的局限性、知识的不精确性等原因,导致所获取的信息具有模糊性、随机性等特征,其诊断结果的精确性和时效性远未达到实用要求。
故障预测与健康管理(Prognostic and Health Management, PHM)是一种利用先进传感器技术,并借助各种算法和智能模型来实现对系统健康状态的监控、预测和管理的理论与技术体系,这一技术的实现可以解决故障后修复和定期维护方式造成的“维护不足”或“维护过剩”等问题,进而逐步被状态维护或预测维护所取代。PHM已在航空、电子、机械等领域得到了快速发展。然而,针对电力变压器的PHM方法还不太完善,主要体现在:①变压器的健康监测大部分关注化学和电故障,很少关注机械故障;②变压器的油、气和温度被广泛用于健康监测和诊断,相比较而言,振动信号很少被用到;③对于变压器PHM的研究目前仅处于监测和诊断阶段,对于故障预测和剩余寿命(RUL)预测的研究还很少。